The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] multiple antenna(31hit)

21-31hit(31hit)

  • Adaptive Linear Detectors in Space-Time Block Coded Multiuser Systems

    Hyeon Chyeol HWANG  Seung Hoon SHIN  Seok Ho KIM  Kyung Sup KWAK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:3
      Page(s):
    999-1002

    In this letter, we propose adaptive linear detectors in space-time block coded multiuser systems, by exploiting a particular property of the minimum mean square error multiuser detector. The proposed scheme can provide much faster convergence than the existing adaptive scheme [5] and so lower the system overhead requirements.

  • An Efficient Scheme for Transmit Antenna Diversity with Limited Feedback Channel Rate

    Seung Hoon SHIN  Bong Kwan CHO  Hyeon Chyeol HWANG  Kyung Sup KWAK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:8
      Page(s):
    3471-3474

    In this letter, we propose an efficient closed-loop transmit (Tx) diversity scheme that works well for high mobility as well as low mobility. The proposed scheme exploits a quantized weight vector codebook designed by separating it into gain and phase codebooks. Simulation results reveal that the proposed scheme can provide a significant advantage in both complexity and flexibility over conventional methods.

  • Approximate Maximum Likelihood Approach for Code Acquisition in DS-CDMA Systems with Multiple Antennas

    Sangchoon KIM  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E88-B No:3
      Page(s):
    1054-1065

    The problem of estimating code timings in DS-CDMA systems with multiple antennas is considered in the presence of multipath time-varying fading channels and near-far environments. We present an efficient algorithm for an approximate maximum likelihood approach of jointly estimating the multipath timings of a desired user for DS-CDMA systems that consist of multiple antennas either uncorrelated or fully correlated in space. The procedures of the algorithm to estimate code-timings are developed in order to better exploit the time-varying characteristics of the fading process. In the multipath fading channels, the solution of the proposed algorithms is based on successively optimizing the criterion for increasing numbers of multipath delays. It is shown via simulation results that the modified approaches of the approximate maximum likelihood algorithm much more improve its acquisition performance in the time-varying fading channels. It is seen that the acquisition performance of multiple antennas based acquisition scheme is much better than that of a single antenna based timing estimator in the presence of multipath fading channels and the near-far problem. Furthermore, it is observed that the proposed algorithms outperform the correlator and MUSIC estimator in the multiuser environments with near-far situation on time-varying Rayleigh fading channels.

  • An Iterative Hyperplane Projection Based Affine Projection Algorithm for Fast Converging Space-Time Adaptive Decision-Directed Equalizer

    Won-Cheol LEE  Chul RYU  Jin-Ho PARK  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E87-B No:12
      Page(s):
    3673-3681

    This paper introduces an efficient affine projection algorithm (APA) using iterative hyperplane projection. The inherent effectiveness against the rank deficient problem has led APA to be the preferred algorithm to be employed for various applications over other variety of fast converging adaptation algorithms. However, the amount of complexity of the conventional APA could not be negligible because of the accomplishment of sample matrix inversion (SMI). Another issue is that the "shifting invariance property," which is typically exploited for single channel case, does not hold ground for space-time decision-directed equalizer (STDE) application deployed in single-input-multi-output (SIMO) systems. Therefore, fast adaptation schemes, such as fast traversal filter based APA (FTF-APA), becomes impossible to utilize. The motivation of this paper deliberates on finding an effective algorithm on the basis of APA, which yields low complexity while sustaining fast convergence as well as excellent tracking ability. The performance of the proposed method is evaluated under wireless SIMO channel in respect to bit error rate (BER) behavior and computational complexity, and upon completion, the validity is confirmed. The performance of the proposed method is evaluated under wireless SIMO channel in respect to bit error rate (BER) behavior and computational complexity, and upon completion, the validity is confirmed.

  • Channel Estimation with Transmitter Diversity for High Rate WPAN Systems

    Dong-Jun CHO  Young-Hwan YOU  Hyoung-Kyu SONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E87-B No:11
      Page(s):
    3382-3384

    This letter presents an investigation of channel estimation scheme for a high rate WPAN system using multiple transmit antennas over indoor wireless channel. A simple algorithm utilizing the autocorrelation property of a CAZAC preamble is proposed for channel estimation. Simulation and analytical results show the performance of the proposed algorithm in terms of mean square error (MSE) of channel estimation. At the same time, the effect of imperfect channel estimation introduced by relatively large RMS delay spread is highlighted.

  • Diagonal Algebraic Space Time Coding with 8-Star-PSK Signals

    Pingyi FAN  

     
    PAPER-Fundamental Theories

      Vol:
    E87-B No:8
      Page(s):
    2182-2188

    Diagonal algebraic space time (DAST) block codes was proved to achieve the full transmit diversity over a quasi-static fading channel and to maintain 1 symbol/s/Hz. When the number of transmit antennas employed is larger than 2, DAST codes outperform the codes from orthogonal design with the equivalent spectral efficiency. However, due to the limitation on the signal constellation with complex integer points, no good 3bits/symbol DAST block code was given previously. In this paper, we propose a general form of 8-star-PSK constellations with integer points and present some theoretical results on the performance of the equivalent 8-star-PSK modulations. By using our proposed 8-star-PSKs, we present a searching algorithm to construct DAST codes with 3 bits per symbol under some criteria and investigate their performances over flat Rayleigh fading channels. It is shown that (5,2) 8-star-PSK scheme has a comparable performance to conventional 8PSK over additive white Gaussian noise (AWGN) channel and the corresponding DSAT codes constructed can achieve significant performance gain over flat Rayleigh fading channel.

  • Evaluation of HARQ Scheme with Antenna Permutation and TCM Reassignment for Space-Time Transmission in Slow Nakagami-Rice Fading MIMO Channel

    Toshiaki KOIKE  Hidekazu MURATA  Susumu YOSHIDA  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:6
      Page(s):
    1487-1494

    An automatic-repeat-request (ARQ) scheme for improving the system throughput efficiency is evaluated in coded multiple-input multiple-output (MIMO) transmissions. Supplementary trellis-coded modulation (TCM) code has been proposed for hybrid ARQ schemes. The free distance of the TCM after code combining can be increased by employing different TCM codes for retransmissions. The MIMO scheme offers additional flexibility in preventing successive frame errors by changing the connections between transmitters and transmit antennas upon retransmission. In this paper, an ARQ strategy employing both TCM reassignment and antenna permutation technique is investigated. It is shown through computer simulations that this ARQ scheme achieves high throughput even in severe conditions of low signal-to-noise ratio and high Rician factor over spatially and temporally correlated Nakagami-Rice fading MIMO channels.

  • On the Capacity of MIMO Wireless Channels

    Hyundong SHIN  Jae Hong LEE  

     
    PAPER-Fundamental Theories

      Vol:
    E87-B No:3
      Page(s):
    671-677

    In this paper, we present a new closed-form formula for the ergodic capacity of multiple-input multiple-output (MIMO) wireless channels. Assuming independent and identically distributed (i.i.d.) Rayleigh flat-fading between antenna pairs and equal power allocation to each of the transmit antennas, the ergodic capacity of such channels is expressed in closed form as finite sums of the exponential integrals which are the special cases of the complementary incomplete gamma function. Using the asymptotic capacity rate of MIMO channels, which is defined as the asymptotic growth rate of the ergodic capacity, we also give simple approximate expressions for the MIMO capacity. Numerical results show that the approximations are quite accurate for the entire range of average signal-to-noise ratios.

  • Performance Impairment of Transmit Diversity OFCDM Systems due to Carrier Frequency Offset

    Kyung-Geun LEE  Hyoung-Kyu SONG  Mi-Jeong KIM  Young-Hwan YOU  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:9
      Page(s):
    2819-2822

    This letter addresses the performance degradation due to carrier frequency offset in an orthogonal frequency and code division multiplexing (OFCDM) systems with multiple transmit antennas. For the performance evaluation, the average bit error rate (BER) expression is derived taking account of the effect of a carrier frequency offset. Derived results show that the BER performance of the space-time coded OFCDM system is less sensitive to a frequency offset, compared to the normal OFCDM system.

  • Improvement of BPSK Space-Time Turbo Code with Full Rate and Full Antenna Diversity

    Chikara KOJIMA  Takahiko SABA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E85-A No:10
      Page(s):
    2248-2255

    Space-time turbo codes have both advantages of space-time codes and turbo codes, and the space-time turbo code proposed by Su and Geraniotis is known to achieve full coding rate and full antenna diversity. This paper presents some improvements of their space-time turbo code in a two-antenna configuration. We first propose a new condition for full antenna diversity which imposes less constraints on the interleaver. Next, by applying a method used to improve turbo trellis-coded modulation to the space-time turbo code, we propose a new decoding algorithm which utilizes more precise estimates on extrinsic information. Simulation results show that the proposed condition assures full antenna diversity and the new decoding algorithm provides a better performance than that of Su and Geraniotis'.

  • Joint Optimization of Transmitter/Receiver with Multiple Transmit/Receive Antennas in Band-Limited Channels

    Koichiro BAN  Masaaki KATAYAMA  Takaya YAMAZATO  Akira OGAWA  

     
    PAPER

      Vol:
    E83-B No:8
      Page(s):
    1697-1704

    We study the joint optimization problem of a transmitter with multiple transmit antennas and a receiver with multiple receive antennas in a narrow-band communication system. We discuss the problem of designing a pre-filter at the transmitter, a post-filter at the receiver, and a bit allocation pattern to multiple symbols in the sense of minimizing the average bit error rate. With the optimized filters and the bit allocation, we could realize high efficiency and high data rate in band-limited channels.

21-31hit(31hit)